Facial Recognition Performance and Its Measurement

PRESENTED BY: Patrick Grother

National Institute of Standards and Technology

MODERATED BY: Stephen Redifer 2020-09-24

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

HDIAC is sponsored by the Defense Technical Information Center (DTIC). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Defense Technical Information Center.

info@hdiac.org https://www.hdiac.org

Face Recognition Performance and its Measurement

Patrick Grother

NIST U. S. Department of Commerce

Homeland Defense and Security Information Analysis Center

September 24, 2020

How many biometrics here?

How many biometrics here?

1 Face

How many biometrics here?

- 1 Face
- 2 Irides + periocular

How many biometrics here?

- 1 Face
- 2 Irides + periocular
- 3 Skin texture

https://patents.google.com/patent /US7369685B2/

How many biometrics here?

- 1 Face
- 2 Irides + periocular
- **3 Skin texture** https://patents.google.com/patent /US7369685B2/

- 4 Head shape
- 5 Ears
- 6 Scars

Human review: See ASTM E3149 Standard Guide for Facial Image Comparison Feature List for Morphological Analysis

How many biometrics here?

- 1 Face
- 2 Irides + periocular
- **3 Skin texture** https://patents.google.com/patent /US7369685B2/

4 Head shape
5 Ears
6 Scars
4 Human review: See ASTM E3149
5 Standard Guide for Facial Image Comparison Feature
List for Morphological Analysis

7 Anything else unique

- Short + long wave infrared
- Hyperspectral
- 3D

The Afghan Girl

https://www.nationalgeographic.com/magazine/2002/04/afghan-girl-revealed/ c. National Geographic, photographic portrait by journalist <u>Steve McCurry</u>, 1984

Face authentication: Closed system

https://www.macrumors.com/2017/10/25/apple-reduced-face-id-accuracy-iphone-x/

Face Recognition: How? By comparing faces

https://securitytoday.com/articles/2018/02/27/us-border-patrolunable-to-validate-epassport-data.aspx

https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/eborder/eborder-abc

https://en.wikipedia.org/wiki/FIPS_201

Georgetown Law. Center on Privacy + Technology https://www.airportfacescans.com/

Figure 2: A traveler has his face scanned as a Customs and Border Protection agent provides instruction. (Photo: Associated Press, all rights reserved)

- Same identity?
- Different identity?

Face Recognition: How? By comparing faces

https://securitytoday.com/articles/2018/02/27/us-border-patrolunable-to-validate-epassport-data.aspx

https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/eborder/eborder-abc

https://en.wikipedia.org/wiki/FIPS_201

Georgetown Law. Center on Privacy + Technology https://www.airportfacescans.com/

Figure 2: A traveler has his face scanned as a Customs and Border Protection agent provides instruction. (Photo: Associated Press, all rights reserved)

- Same identity?
- Different identity?

Source: FRVT staff and sister, with permission

Inbound border crossing using passport verification

https://en.wikipedia.org/wiki/EPassport_gates CC BY 2.0. File:Heathrow Terminal 5 ePassport gates.jpg Created: 16 July 2010

Two factor authentication:

- 1. Something you have:
- 2. Something you are:

Possession of passport Successful recognition of a biometric

NIST

Face recognition: How?

- DCNNs
- ML/AI
- Not commoditized
- Trade secrets

Templates aka feature vectors

- 0.2 4KB, 2KB is most common
- 0.1 to 1 second on CPU

Templates

- Templates are reversible
- Images retained

NIST

FR in operations: Passport verification at a border

- 1. No central database
- 2. Two images involved: live capture and chip image

3. Trusted passport?

- Digital signature
- Morphed image

4. Error and consequences

- False Accept \rightarrow Border security
- False Negative \rightarrow Inconvenience

FRVT 1:1 Leaderboard 2020-07-27

Developer 🔶	VISA Photos FNMR @ FMR ≤ 0.000001	MUGSHOT Photos FNMR @ FMR ≤ 0.00001	MUGSHOT Photos FNMR @ FMR ≤ 0.00001 DT>=12 ▲ YRS	VISABORDER Photos FNMR@ FMR ≤ 0.000001	BORDER Photos FNMR @ FMR = 0.000001	WILD Photos FNMR@ FMR ≤ 0.00001
sensetime- 003	0.0027 ⁽³⁾	0.0027 ⁽¹⁾	0.0027 ⁽¹⁾	0.0051 ⁽⁶⁾	0.0100 ⁽⁷⁾	0.0355 ⁽⁴⁵⁾
deepglint-002	0.0027 ⁽²⁾	0.0032 ⁽⁷⁾	0.0033 ⁽²⁾	0.0043 ⁽²⁾	0.0084 ⁽³⁾	0.0301 ⁽¹⁾
paravision- 004	0.0046 ⁽⁷⁾	0.0030 ⁽⁴⁾	0.0036 ⁽³⁾	0.0091 ⁽¹⁸⁾	0.0188 ⁽²⁷⁾	0.0311 ⁽¹⁶⁾
visionlabs-008	0.0036 ⁽⁴⁾	0.0031 ⁽⁶⁾	0.0040 ⁽⁴⁾	0.0045 ⁽³⁾	0.0079 ⁽¹⁾	0.0308 ⁽¹⁰⁾
					-	
toshiba-003	0.0214 ⁽⁶⁴⁾	0.0085 ⁽⁴¹⁾	0.0131 ⁽⁴⁰⁾	-	0.0241 ⁽³⁷⁾	0.0321 ⁽²⁶⁾
fujitsulab- 000	0.0212 ⁽⁶³⁾	0.0091 ⁽⁴⁵⁾	0.0133 ⁽⁴¹⁾	0.0251 ⁽⁷¹⁾	0.4200 ⁽¹⁰⁵⁾	0.0481 ⁽⁷³⁾
asusaics-000	0.0209 ⁽⁶²⁾	0.0085 ⁽³⁹⁾	0.0134 ⁽⁴²⁾	0.0143 ⁽³⁸⁾	0.7189 ⁽¹¹²⁾	0.0332 ⁽³⁵⁾
cogent-004	0.0116 ⁽³³⁾	0.0096 ⁽⁴⁹⁾	0.0134 ⁽⁴³⁾	0.0157 ⁽⁴¹⁾	0.0325 ⁽⁵⁴⁾	0.0436 ⁽⁶⁶⁾

https://pages.nist.gov/frvt/html/frvt11.html

Accuracy Gains: Typical Example

Enablers of Better Face Recognition

Black box: What is a DCNN?

$$F(\mathbf{x}) = F_{N}(F_{N-1}(...,F_{2}(F_{1}(\mathbf{x},\mathbf{w}_{1}),\mathbf{w}_{2})...,\mathbf{w}_{N-1}),\mathbf{w}_{N})$$

- » CNN is a composed function, F, implementing local (image) filters
- » Operating on an image, \mathbf{x}_1 , input to the first layer
 - Dimensions are W x H x K
- » Producing intermediate feature maps, \mathbf{x}_n , $1 < n \le N$
- » Each layer has a function, F_n, which perform various operations and are handcrafted
- » Each layer has parameters, \mathbf{w}_{n} , which are **learned from some training data**

Black box: What is a DCNN?

$$F(\mathbf{x}) = F_{N}(F_{N-1}(..., F_{2}(F_{1}(\mathbf{x}, \mathbf{w}_{1}), \mathbf{w}_{2})..., \mathbf{w}_{N-1}), \mathbf{w}_{N})$$

- » CNN is a composed function, F, implementing local (image) filters
- » Operating on an image, \mathbf{x}_1 , input to the first layer
 - Dimensions are W x H x K
- » Producing intermediate feature maps, \mathbf{x}_n , $1 < n \le N$
- » Each layer has a function, F_n, which perform various operations and are handcrafted
- » Each layer has parameters, \mathbf{w}_{n} , which are **learned from some training data**

Multi-biometrics

Multisensor

Multi-instance (contemporaneous)

Repeated-instance (longitudinal)

Multiple algorithm

Score = Fusion [Algorithm_B(X,Y), Algorithm_A(X,Y)]

1:1 Authentication: Live-to-document

https://en.wikipedia.org/wiki/FIPS_201

https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/eborder/eborder-abc

Georgetown Law. Center on Privacy + Technology https://www.airportfacescans.com/

Figure 2: A traveler has his face scanned as a Customs and Border Protection agent provides instruction. (Photo: Associated Press, all rights reserved)

NIST

1:N Identification

Scalability to Large Populations

High volume applications

- Duplicate detection (passports, visa fraud, National ID)
- Casino persons of interest
- Aircraft boarding
- Surveillance
 Human review usually infrequent

Low volume applications, with human review:

- Criminal investigation
- Clustering media

Face recognition: How?

THIS IS NOT HOW FR WORKS. INSTEAD:

- An FR engine only knows people who are enrolled into it
- FR implements comparisons of new photos

1:N Search = N 1:1 comparisons (sometimes)

A demonstration of 1:N face recognition

- » Enroll border crossing images
 - 104.1 million
 - 32.6 million people

- » Mated searches
 - 2.3 million "visa" APPLICATION images

FNIR, aka "miss rate"

- » Non-mated searches
 - 1.8 million "visa" APPLICATION images

FPIR, aka "false alarm rate"

A demonstration of 1:N face recognition

Step 1:

- Enrol N = 104 million photos, of 32.6 million people
- Images are examples, from NIST Special Database 32, representative of pose, illumination, compression

Step 2:

 Search with almost ISO compliant "visa" portraits

104 Million: "visa" to "border crossing" search accuracy

INVESTIGATION FALSE POS ID RATE = 100%	NEC-3 (2018-11) (0.7 + 1.1 seconds)	RankOne-006 (2019-06) (0.1 + 18 seconds)
Searches not returning ANY image of the correct person at rank 1	0.4%	2%
Searches not returning ALL images of the correct person in the top ranks	1.6%	11%

HIGH VOLUME, HIGH THRESHOLD IDENTIFICATION, FALSE POS ID RATE = 1%	NEC	Rank One
Searches not returning ANY image of the correct person above threshold	0.6%	8.3%
Searches not returning ALL images of the correct person above threshold	4.5%	41.0%

1:N search accuracy Enroll N = 104 million ENTRY images; Search CIS Portraits

- But version control matters:
 ⇒ NIST eval vs. Productized
- 2. Investigative search with N > 100M is possible, defensible
- 3. Low FPIR is not attainable, limited by
 - ⇒ Unconsolidated IDs
 - ⇒ So do presence of twins > siblings > families

Miss rate: 0.6% \Rightarrow Hit rate: 99.4%

With threshold set so that only 1 in 100 nonmate search produces a false positive

FRVT 1:N Leaderboard 2020-08-12

Algorithm	Mugshot Mugshot N = 12000000 FE	Mugshot FB Mugshot N = 1600000 FB	Mugshot Webcam N = 1600000 CBF	Mugshot Profile N = 1600000 FBI	Visa Border N = 1600000 AIRPOR
deepglint 001	-	0.0025 ⁽⁴⁾	0.0116 ⁽²⁾	0.7914 ⁽²⁴⁾	0.0051 ⁽¹⁾
sensetime 003	0.0024 ⁽¹⁾	0.0015 ⁽¹⁾	0.0105 ⁽¹⁾	0.1953 ⁽⁴⁾	0.0067 ⁽²⁾
<u>nec 3</u>	0.0031 ⁽²⁾	0.0021 ⁽³⁾	0.0149 ⁽³⁾	0.5136 ⁽¹³⁾	0.0070 ⁽³⁾
paravision 005	0.0065 ⁽⁴⁾	0.0030 ⁽⁵⁾	0.0199 ⁽⁵⁾	0.2335 ⁽⁶⁾	0.0098 ⁽⁴⁾
pixelall 004	0.0230 ⁽¹⁴⁾	0.0109 ⁽¹³⁾	0.0497 ⁽¹⁷⁾	0.9992 ⁽¹³⁶⁾	0.0227 ⁽⁵⁾
microsoft 6	0.0184 ⁽⁹⁾	0.0086 ⁽¹⁰⁾	0.0298 ⁽⁹⁾	0.1174 ⁽¹⁾	0.0234 ⁽⁶⁾
ntechlab 008	0.0218 ⁽¹¹⁾	0.0099 ⁽¹²⁾	0.0364 ⁽¹¹⁾	0.1998 ⁽⁵⁾	0.0284 ⁽⁷⁾
idemia_007	0.0242 ⁽¹⁵⁾	0.0123 ⁽¹⁷⁾	0.0419 ⁽¹⁶⁾	1.0000 ⁽¹⁶⁸⁾	0.0350 ⁽⁸⁾
rankone_009	0.0258 ⁽¹⁸⁾	0.0124 ⁽¹⁸⁾	0.0597 ⁽²⁴⁾	0.8180 ⁽²⁵⁾	0.0427 ⁽⁹⁾
dermalog_007	0.1097 ⁽⁸¹⁾	0.0594 ⁽⁹⁵⁾	0.1202 ⁽⁸⁴⁾	0.9341 ⁽³⁹⁾	0.1027 ⁽¹⁰⁾
gorilla 004	0.1109 ⁽⁸²⁾	0.0645 ⁽¹⁰⁷⁾	0.1317 ⁽⁹⁷⁾	0.8521 ⁽²⁶⁾	0.1059 ⁽¹¹⁾

•

• Values are threshold-based FNIR at FPIR = 0.003

https://pages.nist.gov/frvt/html/frvt1N.html

State of the Industry

Performance

- » Massive expansion of industry
 - International markets + adoption
- » Massive gains in accuracy
 - Very accurate on high quality images
 - Better tolerance of poor image quality
 - Better tolerance of ageing (time lapse < 20 years)
 - Operate with larger databases
- » Accuracy varies greatly across the industry
 - China EU Japan Russia US
 - Buyer beware!
- Some high volume applications (e.g. duplicate detection) require a high threshold for low false positives
 - Leads to higher false negatives
 - Image quality remains critical
- » Face-aware cameras
 - ISO/IEC 24358 camera capabilities

Limitations

- » Demographic differentials "bias"
 - False positive >> False negative
 - False negatives from poor quality photos
 - Large false positive variations by race
 - Higher false positives among women, elderly, young
 - Algorithm matters
 - Better accuracy → smaller inequities
 - Only some Chinese algorithms give false positive rates on Chinese faces similar to those in Caucasian
 - Some one-to-many algorithms mitigate differentials
 - "Know-your-algorithm"
- » Twins not separable (false positives)
- » Attacks
 - Easy to "steal" a face for impersonation
 - Systems may be deployed without attack detection
 - Morphing
 - Adversarial
- » Human review capability is poor

AGEING

mages from presenter

Images from presenter

https://www.bellingcat.com/news/uk-and-europe/2018/09/26/skripal-suspect-boshirov-identified-gru-colonel-anatoliy-chepiga/

Mate score distributions under ageing

Time lapse between search and initial encounter enrollment (years)

Time lapse between search and initial encounter enrollment (y ears)

Ageing: N = 3.1 million

NIST

Performance in perspective: What matters more? 1. Algorithm 2. Population size 3. Ageing

- Years Lapsed (00,02]
- Years Lapsed (02,04]
- Years Lapsed (04,06]
- Years Lapsed (06,08]
- Years Lapsed (08,10]
- Years Lapsed (10,12]
- Years Lapsed (12,14]
- Years Lapsed (14,18]

Masks

What happens when you hide 40-70% of the face?

Synthetic masks

- » NIST will vary
 - Shape, color, extent
- » Positioning
 - Relative to landmarks reported by "dlib"
 - If "dlib" fails, then relative to detected eyes from good FRVT FR algorithms

FRVT Leaderboard (all without masks)

https://pages.nist.gov/frvt/html/frvt11.html

Developer	VISA Photos FNMR @ FMR ≤ 0.000001	MUGSHOT Photos FNMR @ FMR ≤ 0.00001	MUGSHOT Photos FNMR @ FMR ≤ 0.00001 DT>=12 YRS	VISABORDER Photos FNMR@ FMR ≤ 0.000001	BORDER Photos FNMR @ FMR = 0.000001	WILD Photos FNMR@ FMR ≤ 0.00001	CHILD EXP Photos FNMR@ FMR ≤ 0.01
visionlabs-0	08 0.0036 ⁽⁴⁾	0.0031 ⁽⁶⁾	0.0040 ⁽⁴⁾	0.0045 ⁽³⁾	0.0079 ⁽¹⁾	0.0308 ⁽¹⁰⁾	-
ntechlab-00	0.0061 ⁽¹⁰⁾	0.0056 ⁽¹⁷⁾	0.0108 ⁽²⁹⁾	0.0042 ⁽¹⁾	0.0080 ⁽²⁾	0.0312 ⁽²⁰⁾	-
deepglint-00	0.0027 ⁽²⁾	0.0032 ⁽⁷⁾	0.0033 ⁽²⁾	0.0043 ⁽²⁾	0.0084 ⁽³⁾	0.0301 ⁽¹⁾	0.3422 ⁽⁶⁾
dahua-004	4 0.0058 ⁽⁹⁾	0.0036 ⁽⁸⁾	0.0048 ⁽⁸⁾	0.0051 ⁽⁵⁾	0.0086 ⁽⁴⁾	0.0304 ⁽⁵⁾	-
vocord-00	8 0.0038 ⁽⁵⁾	0.0042 ⁽¹¹⁾	0.0055 ⁽¹²⁾	0.0045 ⁽⁴⁾	0.0086 ⁽⁵⁾	0.0310 ⁽¹⁴⁾	-
cuhkee-00	1 0.0045 ⁽⁶⁾	0.0031 ⁽⁵⁾	0.0046 ⁽⁷⁾	0.0051 ⁽⁷⁾	0.0095 ⁽⁶⁾	0.1524 ⁽¹⁰²⁾	-
sensetime-0	03 0.0027 ⁽³⁾	0.0027 ⁽¹⁾	0.0027 ⁽¹⁾	0.0051 ⁽⁶⁾	0.0100 ⁽⁷⁾	0.0355 ⁽⁴⁵⁾	0.3683 ⁽⁷⁾
alleyes-000	0.0090 ⁽²¹⁾	0.0055 ⁽¹⁵⁾	0.0087 ⁽²¹⁾	0.0068 ⁽¹⁰⁾	0.0105 ⁽⁸⁾	0.0306 ⁽⁸⁾	_
tech5-004	0.0234 ⁽⁷²⁾	0.0086 ⁽⁴²⁾	0.0162 ⁽⁵³⁾	0.0065 ⁽⁹⁾	0.0112 ⁽⁹⁾	0.0311 ⁽¹⁷⁾	-
yitu-003	0.0026 ⁽¹⁾	0.0066 ⁽²⁵⁾	0.0085 ⁽¹⁷⁾	0.0064 ⁽⁸⁾	0.0114 ⁽¹⁰⁾	0.0360 ⁽⁴⁹⁾	_

Accuracy with and without masks

But... further challenges

	Algo	rithm 🌲	VISABORDER Photo FNMR @ FMR ≤ 0.000 (NOT MASKED)	s 01 🌲 light	VISABORDER Photos FNMR@FMR ≤ 0.00001 (MASKED PROBE) blue, wide, medium coverage	JC
Somo	deepgl	int-002	0.0039 ⁽⁹⁾		0.0237 ⁽¹⁾	
algorithms	paravis	ion-004	0.0088 ⁽⁴⁸⁾	Failure to verify rate rises	0.0281 ⁽²⁾	
may he	visionla	abs-009	0.0028 ⁽¹⁾	from 0.4% to 2.4%	0.0355 ⁽³⁾	
usable	iqfac	e-002	0.0086 ⁽⁴⁶⁾		0.0445 ⁽⁴⁾	
asabic	pense	es-001	0.0106 ⁽⁶⁰⁾		0.0461 ⁽⁵⁾	100
	vocor	·d-008	0.0038 ⁽⁷⁾		0.0500 ⁽⁶⁾	
	idemi	ia-006	0.0048 ⁽¹⁷⁾		0.0539 ⁽⁷⁾	
Most pre-	rankone-008	rankone-008 videmo-000 scanovate-001 intelresearch-001			0.5470 ⁽⁵⁸⁾	
pandemic	videmo-000				0.5509 ⁽⁵⁹⁾	
algorithms do not tolerate masks	scanovate-001				0.5973 ⁽⁶⁰⁾	
	intelresearch-001				0.6184 ⁽⁶¹⁾	
	kedacom-000		0.0391 ⁽⁷¹⁾	Failure to verify rate	0.6188 ⁽⁶²⁾	
	innovativetechnologyltd-0	02	0.0251 ⁽⁶⁴⁾	rises from 1% to 65%	0.6454 ⁽⁶³⁾	
	idemia-005		0.0111 ⁽⁴⁴⁾		0.6469 ⁽⁶⁴⁾	

NISTIR 8311 - Ongoing FRVT Part 6A: Face recognition accuracy with face masks using pre-COVID-19 algorithms https://pages.nist.gov/frvt/html/frvt_facemask.html

Demographic Effects

FR accuracy varies by population

Landscape

- Race? Sex? Age? What else?
- Algorithms, cameras?
- 1:1 vs. 1:N
- False positives? Or Negatives?

NIST tests and results

- Criminal investigation
- Clustering media

Scope of NIST demographics work

» Algorithms

- 187 algorithms, 99 developers
- Mostly commercial, some universities
- Prototypes from R&D labs
- » Modes
 - One to one verification (DHS, DoS)
 - One to many identification (mugshots)

» Metrics:

- False positives
- False negatives
- Failure to enroll

» Relevance to applications

- » 18.3 million cooperative photos of 8.5 million people
 - DHS/CIS Application Photos
 - High quality
 - Race: 24 countries, 7 regions
 - Sex: M, F only
 - Age groups: [12-20], [20-35], [35-50], [50-65], [65-99].
 - DHS/CBP Entry Photos
 - Mediocre quality
 - Compare with CIS photos
 - DOS Visa photos
 - Age
 - FBI mugshots
 - Sex: M, F, only
 - Age groups: Adults above or below 45.
 - Race: Asian, Black, White, Native American

Cross-age false match rates in six countries, male x male, and female x female

Thinking through consequences: Three applications

1. Dispensing drugs		2.	2. Boarding a plane		3. Watchlist		
»	Non-repudiation	»	Facilitation of recording immigration exit vs. Access Control	»	Soccer stadium. Counter-terrorism. Compulsive gamblers		
»	1:1	»	1:N	»	1:N		
»	Volume: 100s per day	»	Volume: 100s per flight	»	Volume: 10s of thousands per day		
»	Transactions are almost always mated	»	Transactions are almost always mated	»	Transactions are almost always non- mated		
	 Prob(Impostor) is LOW 		Prob (Impostor) is LOW		Prob (Genuine) is LOW		
» »	False negative \rightarrow Inconvenience False positive \rightarrow Prescription drug	»	False negative \rightarrow Paper boarding with airline staff	*	False negative \rightarrow Undetected "bad guy"		
	fraud	»	False positive \rightarrow Stowaway	»	False positive \rightarrow Incorrect		
			 but manifest exists, and legitimate customer may board also so "low" consequences 		enforcement action civil liberties		
»	Who is harmed by demographic differential in FP?Some pharmacists	*	Who is harmed by demographic differential in FP?Airline.	»	Who is harmed by demographic differentials in FP?Bystanders		

- » Leading contemporary algorithms
 - Are very accurate
 - Increasingly tolerate poor image quality
 - Generally distribute errors inequitably across demographics

- » Leading contemporary algorithms
 - Are very accurate
 - Increasingly tolerate poor image quality
 - Generally distribute errors inequitably across demographics
- False positive differentials much larger than false negative differentials
 - More false positives in Asian and African faces
 - More false positives in women
 - More false positives in the old and very young

- » Leading contemporary algorithms
 - Are very accurate
 - Increasingly tolerate poor image quality
 - Generally distribute errors inequitably across demographics
- False positive differentials much larger than false negative differentials
 - More false positives in Asian and African faces
 - More false positives in women
 - More false positives in the old and very young
- » One-to-many algorithms don't necessarily behave like one-to-one
 - Some one-to-many effect a stabilization of the impostor distribution

- » Leading contemporary algorithms
 - Are very accurate
 - Increasingly tolerate poor image quality
 - Generally distribute errors inequitably across demographics
- False positive differentials much larger than false negative differentials
 - More false positives in Asian and African faces
 - More false positives in women
 - More false positives in the old and very young
- » One-to-many algorithms don't necessarily behave like one-to-one
 - Some one-to-many effect a stabilization of the impostor distribution
- » Algorithm matters
 - Accuracy
 - Demographic sensitivity
 - Know-your-algorithm
 - Traceability to (NIST) tests is not easy

- » Leading contemporary algorithms
 - Are very accurate
 - Increasingly tolerate poor image quality
 - Generally distribute errors inequitably across demographics
- False positive differentials much larger than false negative differentials
 - More false positives in Asian and African faces
 - More false positives in women
 - More false positives in the old and very young
- » One-to-many algorithms don't necessarily behave like one-to-one
 - Some one-to-many effect a stabilization of the impostor distribution
- » Algorithm matters
 - Accuracy
 - Demographic sensitivity
 - Know-your-algorithm
 - Traceability to (NIST) tests is not easy

- » Application matters
 - Error impact can be grave or inconsequential.

- » Leading contemporary algorithms
 - Are very accurate
 - Increasingly tolerate poor image quality
 - Generally distribute errors inequitably across demographics
- False positive differentials much larger than false negative differentials
 - More false positives in Asian and African faces
 - More false positives in women
 - More false positives in the old and very young
- » One-to-many algorithms don't necessarily behave like one-to-one
 - Some one-to-many effect a stabilization of the impostor distribution
- » Algorithm matters
 - Accuracy
 - Demographic sensitivity
 - Know-your-algorithm
 - Traceability to (NIST) tests is not easy

- » Application matters
 - Error impact can be grave or inconsequential.
- » Incomplete reporting in the press and academia
 - Confusion of face "analysis" with "recognition"
 - Don't identify which component is at fault
 - Missing reports on false positives
 - Differentiate false positives from false negatives

Twins: The Forgotten Demographic

Source: Twins Day Ohio collected by Notre Dame

Same person or not?

	Identical	Fraternal	
How	Monozygotic	Dizygotic	
Proportion of individuals that are a twin	0.9%	3.1%	
Same-sex	100%	50% in theory 58% actually	
TR gain since 1980	x1.5 since 1980	x1.9 since	
Demographics	~ constant with age, geography	varies with mothers age, order, geography	

Twins, triplets ... constituted 140,000 out of 4M births in 2015 https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_01.pdf Scenario: Identical Twins

Probe is an identical twin

Algorithm	Rank of sibling	Score	FPIR
Microsoft	1	0.78	0.0007
NEC	1	0.77	0.0010
Idemia	1	3066	0.0007

Gallery Size: 1.6 million

Almost all algorithms give high scores

•••

Candidate List

•••

Probe is a fraternal twin

Gallery Size: 1.6 million

Algorithm	Rank of sibling	Score	FPIR
Microsoft	1	0.18	0.878
NEC	1	0.64	0.986
Idemia	11	670	0.909

Candidate List

Face Recognition at National Scale

In a "closed" population (town, country):

- Low false positive rates cannot be achieved due to familial relationships
- Not expected with 10 fingerprints, and iris recognition

Why Face? Versus Fingerprint, Iris.

Source: http://biometrics.itsudparis.eu/english/index.php?menu=datasample

Modality selection

Modality	Image appearance standards	Availability (Ease of capture)	Permanence (ageing)	Uniqueness	Demographic problems	Twins	Retained reference images	Social acceptance
Face	Yes, compliance is difficult and not necessary	Fast Non-contact Socially accepted	Lower Low in children	Lower	Strong false positives in twins, families, same ethnicities, same sex, age	$FMR \rightarrow 1$ identical twins FMR high also in fraternal	Social media, gov databases, (passport, drivers license)	Highest: Global ICAO passport
Finger Contact	Yes	Single fastest Four fast Ten slow (for gov use)	High Possibility of environmenta I damage	High Very high 10 fingers	No More false negatives in the elderly, very young, depends on sensor	$FMR \rightarrow 0$	Legacy gov databases	Lower: Local cultural
Finger Contact- less	No: Interoperability problems with contact	Fast Four fingers for physical access control	High	High	Νο	$FMR \rightarrow 0$	Yes, but only contact fingerprints	Higher: For PACS
Iris	Partial Guidance yes	Slower, optical tradeoffs. Capture both simultaneously	High, possibility of disease	High Very high two irides	No False negatives in elderly	$FMR \rightarrow 0$	Few	Lower

- Nuanced discussion around many of these entries
- There are applications where property is not relevant

ONGOING BENCHMARKS

1. FRVT 1:1 2 Core Biometric Operation Pe		FRVT 1:N Search rformance	3. FRVT Morph Morphed Photo Detection		4. FRVT Quality Automated Quality Assessment		FRVT Face Recognition Vendor Test
CURRENT PROD	OUCTS						
Part 1: Performance of 1:1 Verification Algorithms	Part 2: Performance of 1:N Identification Algorithms	Part 3: Demographic Effects in Face Recognition	Part 4: Performance of Morph Detection Algorithms	Part 5: Performance of Image Quality Assessment Algorithms		Part 6: Performance of Face Recognition with Face Masks	Part 7: Performance of Face Recognition on Twins
		T CHERREN CONTRACTOR C	NET REASON THE ALT ALL ADDRESS AND ADDRES	Ngo (kanangan jaga	<section-header></section-header>	<section-header></section-header>	
Last: 2020-08-25 Next: 2020-07	Last: 2020-03-27 Next: 2020-08	Last: 2019-12-19 Next: 2020-09	Last: 2020-07-24 Next: 2020-09	Last: 2020 Next: 202	0-07-27 20-09 est.	Last: 2020-07-27 Next: 2020-08 est.	Last: Next: TBD

Current technical issues in face recognition

Impeding accuracy

- » Ageing
- » Twins
- » Demographics differentials
 - False positives WORSE THAN false negatives
- » Poor quality images
 - Pose
 - Illumination
 - Resolution
 - Occlusion (face masks)
 - Cropping
 - Distortion
- » Lack of capture standards

Impeding security

- » Morph attack detection
- » Presentation attack detection
- » Tampering
- » Fakes

ISO/IEC 24358

FASTER, BETTER, FACE-AWARE CAPTURE (QUALITY MATTERS!)

Images from presenter

Problems:

- a) Non-frontal faces
- b) No-faces, multiple-faces
- c) Over-, under-exposure
- d) Human review errors
- e) Morphing
- f) Inadequate presentation attack detection

- Potential Solutions:
 a) Face pose detector
 b) Face detectors
 c) 12 bits or closed-loop control
 d) Higher resolution, better compression, 3D
- e) Crypto for tamper-proofing

NIST IFPC Conference: October 27-29.

		IFPC 2020 - Tuesday Oct 27			IFPC 2020 - Wednesday Oct 28			IFPC 2020 - Thursday Oct 29
	07:20	Welcome		07:00	Welcome		07:00	Welcome
11	07:30	Arun Vemury, DHS Science + Technology Directorate (US): Welcome + DHS context	21	07:10	<i>Lars Ericson, IARPA (US): Overview of the IARPA efforts</i> <i>on face recognition</i>	31	07:10	Rebecca Heyer, DSTG (AU): Face recognition in Australia
12	07:40	Istvan Szilard Racz, EU-LISA: European Entry-Exit System	22	07:40	Stergios Papadakis, Johns Hopkins Applied Physics Lab (US): Results from the Odin program on presentation attack detection	32	07:40	Martins Bruveris, Onfido (UK): Reducing geographic performance differentials for face recognition
13	08:10	Anna Stratmann, BSI (DE): Biometric processes of the Entry Exit System	23	08:10	Marta Gomez-Barrero, Hochschule Ansbach (DE): Presentation attack detection and unknown attacks	33	08:10	Mosalam Ebrahimi, Trueface AI (US): A bias mitigation strategy: overcoming the problem of overly confident false matches
14	08:40	Patrick Grother, NIST (US): Measurement of face recognition performance for Entry-Exit	24	08:40	Christian Rathgeb, Hochschule Darmstadt (DE): Impact of facial beautification on face recognition: From plastic surgery to makeup presentation attacks	34	08:40	Jacqueline Cavazos, UT Dallas (US): Accuracy comparison across face recognition algorithms: Where are we on measuring race bias?
	09:10	Break 15 mins		09:10	Break 15 mins		09:10	Break 15 mins
15	09:25	Arun Ross, Michigan State University (US): Look-alike disambiguation in face recognition	25	09:25	Stéphane Gentric, Idemia (FR): Synthetic faces: Are they new identities and can they be used in evaluation?	35	09:25	John Howard & Yevgeniy Sirotin, SAIC (US): Revisiting the Fitzpatrick Scale and Face Photo-based Estimates of Skin Phenotypes
16	09:55	P. Jonathon Phillips, NIST (US): Item response theory for designing calibrated face ability tests	26	09:55	Mei Ngan, NIST (US): Face morphing - threats, technology, what's next	36	09:55	Michael Thieme, Novetta (US): Al performance assessment standardization in SC 42 – implications for biometrics
17	10:25	Laura Rabbitt & Yevgeniy Sirotin, SAIC (US): Human-Algorithm Teaming in Face Recognition	27	10:25	Christoph Busch, NTNU/Hochschule Darmstadt (NO/DE): Face morphing attack detection in the iMARS project	37	10:25	Johanna Morley, Metropolitan Police (UK): Testing of demographic effects in an operational live facial recognition from video system
18	10:55	Carina A. Hahn, NIST (US): The effectiveness of fusion in face recognition	28	10:55	Kiran Raja, NTNU/MOBAI (NO): Morphing Attack Detection - obstacles for research to deployment	38	10:55	Brendan Klare, Rank One Computing (US): Efficiency considerations for face recognition algorithms
19	11:25	Amy N. Yates, NIST (US): Perceptual face abilities of face examiners for varying tasks	29	11:25	Chen Liu, Zander Blasingame, Clarkson U., David Doermann, U. at Buffalo, Jeremy Dawson, West Virginia U. (US): Center for Identification Technology Research (CITER) Morph Attack Detection and Mitigation Projects	39	11:25	Bhargav Avasarala, Paravision (US): Challenges and considerations for masked face recognition
1a	11:55	John Howard & Yevgeniy Sirotin, SAIC (US): Quantifying Race and Gender Effects in Face versus Iris Algorithms	2a	11:55	Pawel Drozdowski Hochschule Darmstadt (DE): Workload reduction in FR identification with morphing	За	11:55	Tony Mansfield, NPL (UK): The new ISO/IEC 19795-1 biometric performance testing and reporting standard
1b	12:25	Patrick Grother, NIST (US): Now under development: ISO/IEC 29794-5 face image quality standard ISO/IEC 24358 face-aware capture specifications	2b	12:25	Mei Ngan, NIST (US): Evaluation of face recognition accuracy for subjects potentially wearing face masks	3b	12:25	
		12:55 Close			12:55 Close			12:55 Close

PATRICK.GROTHER@NIST.GOV

FRVT@NIST.GOV

Facial Recognition Performance and Its Measurement

PRESENTED BY: Patrick Grother

National Institute of Standards and Technology

MODERATED BY: Stephen Redifer 2020-09-24

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

HDIAC is sponsored by the Defense Technical Information Center (DTIC). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Defense Technical Information Center.

info@hdiac.org https://www.hdiac.org