Common “Core”: Using Molecular Fragments to Detect Deadly Opioids

Home / Articles / External Government

A photo illustrating 2 milligrams of fentanyl, a lethal dose for most people, compared to a penny. Matthew Moorman, a Sandia National Laboratories researcher, has developed a new method to detect tiny amounts of fentanyl analogs based on their common molecular structures. (Photo courtesy of the Drug Enforcement Administration)
A photo illustrating 2 milligrams of fentanyl, a lethal dose for most people, compared to a penny. Matthew Moorman, a Sandia National Laboratories researcher, has developed a new method to detect tiny amounts of fentanyl analogs based on their common molecular structures. (Photo courtesy of the Drug Enforcement Administration)

January 10, 2022 | Originally published by Sandia National Laboratories on December 15, 2021

ALBUQUERQUE, N.M. — Researchers at Sandia National Laboratories have developed a method to detect trace amounts of synthetic opioids. They plan to combine their approach with miniaturized sensors to create a hand-portable instrument easily used by law enforcement agents for efficient detection in the field.

Fentanyl is a fast-acting, opioid-based pain reliever that is 80 to 100 times more potent than morphine. Illegally produced fentanyl often is mixed with other drugs such as cocaine or heroin, and minuscule amounts can cause death by overdose. Drug overdose deaths, predominantly due to synthetic opioids such as illicitly manufactured fentanyl and fentanyl analogs, have accelerated during the COVID-19 pandemic, according to the Centers for Disease Control and Prevention.

Want to find out more about this topic?

Request a FREE Technical Inquiry!